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ABSTRACT

This thesis describes a Bayesian method to determine

the number of samples needed to estimate a proportion or

probability with 95% confidence when prior bounds are

placed on that proportion. It uses the Uniform [a,b]

distribution as the prior, and develops a computer program

and tables to find the sample size. Tables and examples

are also given to compare these results with ether

approaches for finding sample size. The improvement that

can be obtained with this method is fewer samples, and

consequently less cost in Weapons Testing is required to

meet a desired confidence size for a proportion or

probability.
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I. INTRODUCTION

"Probability is relative, in part to ... ignorance, in

part to knowledge." [Ref. 1:p. 140]

This is the epitome of Laplace's interpretation of

probability, stated in the 1951 translation of his book A

Philosophical Essay On Probabilities. The topic of this

thesis is to estimate a probability. In particular, we

will try to answer the question of how many trials are

necessary or what should be the sample size to estimate a

;rcportion or probability from a set of Bernoulli trials.

In many forms of Weapon System testing, sampling is not

done sequentially, and the number of items to be tested

must be specified before testing begins. Clearly, enough

weapon systems or components must be tested tc furnish

reasonable confidence in the resulting estimate of, say,

system reliability. On the other hand, since testing is

expensive and often destructive (e.g., missile launches),

the sample size should be no larger than necessary.

Many measures of effectiveness for military systems are

in the form of proportions, or probabilities of an

attribute occurring. Some examples are

I. System Reliability,
2. Hit Probability,
3. Launch Probability,
4. Detection Probability, and
5. Fraction Defective.
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In such cases, testing may often be described as performing

a set of independent Bernoulli trials.

The problem is stated as follows: how many Bernoulli

trials must we conduct, so that with a certain level of

confidence, we can estimate the appropriate proportion or

probability. A way to approach the problem is given by the

definition of a confidence interval:

A confidence interval for an unknown parameter gives an
indication of the numerical value of our unknown
parameter as well as a measure of how confident we are of
that numerical value [Ref. 2:p. 323].

Given a desired confidence interval size for a

proportion or probability, we wish to know the number c'

samples needed to provide a confidence interval of that

size, and in this thesis we will produce tables and a

computer program to assist in finding that sample size.

We will discuss two methods for the above calculaticns

and we will compare the results. The first and well known

one from c±assical statistics bases the estimate upon a

simple random sample, and confidence intervals and sampli

size are explained in the next chapter. The second method,

and primary focus of our study, is the Bayesian one. The

basic advantage of this method is that it makes better use

of the existing experience of the experimenter and his

knowledge of the phenomenon being studied. It aggregates

the information prior to the execution of the experiment

with the observations after. This different concept uses

2



Bayes' Theorem, and may result in smaller sample sizeas

while providing the same sized confidence interval.

In Chapter III, we will describe Bayes' Theorem with

the prior, sampling, and posterior distributions, will

explain the use of the experimenter's prior bounds on the

proportion and the choice of the Uniform distribution as

prior, and will give the derivation of the posterior

distribution and its properties. Then, in Chapter IV, we

will calculate the sample size needed to estimate a

proportion and we will compare the results with the

classical method. We will explain the computer prograr

used for the Bayesian results and will provide tables and

examples to assist the reader. The final chapter will

summarize :ur work, and suggest additional applications cf

Bayes' Theorem to reduce the cost of weapon system testl-n.

3



!I. SAMPLE SIZE TO ESTIMATE A PROPORTION
USING THE CLASSICAL METHOD

In this chapter, we will explain the classical method

to find the sample size to estimate a proportion. First we

will find a point estimate of our proportion or probability

which is an estimate given by a single number. Then we

will find an interval estimate, given by two numbers

between which our proportion must be considered to lie.

Interval estimates provide an indication of the precision

or accuracy of an estimate and are therefore preferable to

point estimates. Finally, we will use this confidence

interval to deterrine the number of samples needed t:

achieve a particular interval size.

A. THE POINT ESTIMATE FOR A PROPORTION

Generally, an estimation problem consists of the

manipulations we might make of the observed values in a

sample to get a good guess, or estimate of the value of an

unknown parameter or parameters.

In our case, we have a sample of n items. The

probability of occurrence of an event (detect a defective

item), called its success, is p while the probability of

non-occurrence of the event is . - p. We inspect all the

n items and count the number of successes as a sequence

4



of independent Bernoulli trials. Let x, be the outcon.e of

each trial, where

X, = 1 if we have a success, and
x, = 0 if otherwise,

and let x be the total number of successes. Then the point

estimate for our proportion will be the sample proportion

n
E X1

=1X (2.1)
n n

where x follows a binomial distribution. The distribution

of sample proportions has mean lp and standard deviation o,

given by

pp = p and op = p(l-p) (2.2)

n

[Ref. 3:p. 142).

For large values of n, the distribution of sampie

proportions is approximately normally distributed. In

particular;

The normal curve gives an excellent approximation to the
binomial distribution when p is close to 0.5. In fact.
for p = 0.5, the approximation is good for n as small as
10. As p deviates from 0.5, the approximation gets worse
and worse. On the other hand, for values of p
significantly different from 0.5, the approximation of
the normal distribution to the binomial distribution gets
better, the larger the value of n. Even if p is as low
as 0.10 or as high as 0.90, if n runs above 50, the
normal approximation does not give bad results. Below
0.10 or above 0.90, the Poisson distribution is commonly
used to approximate the binomial distribution, although
the normal distribution still does fairly well so long as
pn 2 5 (Ref. 4:p. 100].

5



B. THE CONFIDENCE INTERVAL FOR A PROPORTION

Let as be the standard deviation of the sampling

distribution of a statistic S. If the sampling

distribution is approximately normal, we can expect to

find, or we can be confident of finding, an actual sample

statistic S lying in the interval E[S] - 3oa to E[S] + 3as

about 99.73% of the times. Because of this we call this

interval the 99.73% confidence interval for estimating

E[S]. The end values (S ± 3a,) are the confidence limits.

Similarly, S ± 1.96as and S ± 2.58 as are 95% and 99%

confidence limits for S. The percentage confidence is

called confidence level and the numbers 1.96, 2.58, etc...,

in the confidence limits are called confidence coefficients

and are denoted by zc. For this study, we will work with

the 95% confidence level, the normal approximation to the

Binomial, and the corresponding 1.96 confidence

coefficient.

If the statistic S = is the proportion of successes

from a sample size n drawn from a binomial population in

which the proportion or probability of success is p, the

confidence limits for p are [Ref. 4:p. 572)

f ± Zc I - ) - (2.3)Vn

We can compute the confidence limits of Equation 2.3,

using the point estimate for our proportion from Equation

2.1 and so the actual probability will lie in the interval

6



15 - 1.96 1(1 - 6) S p 13 + 1.96 1(1 -15) (2.4)

n n

with a 95% confidence level. For example, if from a

population we inspect 30 items and 6 are found defective,

we can say that we are 95% sure that the true value of the

defective proportion p will lie in the interval calculated

from the above Equation, where f = 6/30 = 0.2,

0.2 - 0.14 5 p :5 0.2 + 0.14,

or 0.06 s p 5 0.34.

The interval size is 0.34 - 0.06 = 0.28, and this

becomes smaller when the sample size increases.

C. DETERMINING THE SAMPLE SIZE FROM CONFIDENCE INTERVAL

Let's state our problem again, as it was discussed in

Chapter I. How many items must we test so that with a

certain level of confidence, we can report the reliability

of this type of item. The certain level of confidence will

be 95% for this study.

One measure of the effectiveness of a sampling effort

is the accuracy of the resulting estimates. In our case of

estimating a proportion, accuracy is reflected by the size

of the resulting 95% confidence interval, or

2(1.96)

n

If the experimenter is willing to specify the size of the

confidence interval on p that results from his testing,

7



then his requirement may serve as a basis for specifying

sample size.

Let 2A be the desired 95% confidence interval size.

Then our proportion will lie between

15-Agp:51+A

and the interval size is - A to A + A or

S±A.

From Equation 2.4 we have

A = 1.96 V(1 - (2.5)

and the sample size n can be determined by solving Equation

2.5 [Ref. 7:p. 247]

n= 1.96) 6(1 - 5) (2.6)

The sample size increases with the accuracy that we want

for our estimate. Better accuracy means smaller interval

size, that is, smaller A and thus from Equation 2.6 bigger

sample size. Also, the sample size is proportional to the

square of the confidence coefficient, which reflects the

desired confidence level. Finally, the sample size depends

on our guess for the proportion p, before we actually

sample from the population. We find the first derivative

8



of Equation 2.6 to be

dn/df = (1.96/A)2 (1-2f)

and the second

d2 n/df2 = -2(1.96/A) 
2

This is negative; so the value of that makes the first

derivative zero maximizes n. This happens for f = 0.5.

Thus, our worst case where we need the maximum sample size,

is found to be when we guess that half of the population is

defective or that we have 50% chance to detect a defective

item. In this case we need to sample n = (1.96/A)2 (0.5)

(0.5) or

n = 0.9604/A 2  (2.7

items. The sample size decreases when the probability of

success increases from 0.5 to bigger values. Finally, this

gives an interpretation of the requirement: the value of

2A is the largest confidence interval that the experin- -er

is willing to have result from his sampling. The value of

n given by Equation 2.7 will guarantee that his requirement

is met.

Table 1 shows the required number of samples to obtain

different 95% confidence interval sizes for various

reliabilities.

9



TABLE 1. NUMBER OF SAMPLES TO OBTAIN 95%
CONFIDENCE INTERVAL SIZE

(Results rounded up)

Interval Probability Of Success = p
Size = 2A 0.5 0.6 0.7 0.8 0.9 0.975

0.05 1,537 1,476 1,291 984 554 150

0.10 385 367 323 246 139 38

0.15 171 164 144 110 62 17

0.20 97 93 81 62 35 10

0.25 62 60 52 40 23 6

0.30 43 41 36 28 16 5

From the above table, we see that if we think that our

probability of success will be p = 0.8 and we want to be

±0.10 accurate with 95% confidence level, we have to sample

62 items.

The numbers of the above table are used to construct

the graph in Figure 1. Here, we visualize better the

previous discussion about the changes of the sample size

because of interval size and probability of success.

In Chapter III, we will solve our problem with the use

of Bayesian methods, which give better results, that is,

smaller numbers of samples than those in Table 1.

10
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III. THE BAYESIAN METHOD AND ESTIMATORS

In this chapter, we will explain a Bayesian method to

find the sample size to estimate a proportion. To do this,

we will first recall Bayes' Theorem and we will use it in

our problem. Then we will explain analytically the three

parts of the Bayesian result we found: the prior

distribution, the sampling, and the posterior one. We will

state our reasons for the selection of the Uniform in the

interval [a,b] as prior and Binomial as sampling

distribution. After that, we will derive the posterior

distribution and its first two moments and we will find the

Bayes estimators. Finally, we will explain the assumption

we made in order to use the posterior distribution to

calculate the 95% confidence interval of our proportion.

Inferentially, the Bayesian method permits the use of

the knowledge and past experience of the experimenter,

before observations are taken. Those, in combination with

the sampling results, may give a smaller number of samples

to estimate a proportion than that given by the classical

method.

A. BAYES' THEOREM

One different method to estimate a proportion is to use

Bayes' Theorem. Let us explain the procedure stating

Bayes' Theorem first.

12



Suppose that Ai , Az ,..., An are mutually exclusive

events whose union is the sample space S, i.e., they form a

partition of the S and one of them must occur. Then if A

is any event of S, we have the following Bayes' Theorem:

P (Ax ) P (A/Ax )
P(At/A) = (3.1)

n

ZP (Ai) P (A/A)
k=1

Consider now our problem. If a lot has a defective

proportion p, then the probability that a sample of size n

will contain exactly X defective items is, for relatively

large lots, approximately [Ref. 4:p. 558),

P (X/p) = npX (1 - p)n-x (3.2)

Suppose now that p is itself a continuous random variable

with density function fp), where

f(p)dp = I

Then the joint probability that for a given lot, (1) p will

fall in the interval p to p + dp and, (2) that a sample

size n taken from this lot contains X defective items, is

the product

P(X,p) = P(X/p) f(p)

According to Bayes' Theorem above, for the continuous case,

the probability that the p that produced the given X lies

in the interval p to p + dp is

P(X/p) f(p)
P(p/X) - (3.3)

o P(X/p) f(p)dp

13



The density function f(p) is called the prior

probability distribution and the probability P(p/X) is the

posterior probability distribution. The third part of the

above Equation 3.3, the sampling distribution P(X/p), is

the probability function from which we will take the X

items. Because we count successes in repeated n Bernoulli

trials, this is Binomial as in Equation 3.2.

B. SELECTION OF THE PRIOR DISTRIBUTION

The prior distribution of a parameter p is a

probability function or probability expressing our degree

of belief about the value of p, prior to observing a sample

of a random variable X whose distribution depends on p

[Ref. 2:p. 553). In other words, we can assign a prior

distribution to a parameter p when we have enough

information about the relative frequencies with which p has

taken each of its possible values in the past. For

example, suppose that the proportion p of defective items

in a certain lot is unknown. Suppose also that this lot is

made from a manufacturer who has produced many such lots in

the past and that detailed records have been kept about the

defective fractions in these lots. The relative

frequencies for these past lots can be used to estimate a

prior distribution for p, which can be used in our certain

lot.

Different distribution functions can be characterized

as "priors". As examples, for a bounded variable p, we

14



mention the Uniform distribution on the interval [0,1], a

triangular shaped distribution, and the Beta distribution

with various parameter values. The Beta distribution for 0

5 p 5 1 was used as the prior in Ref. 6, where the sample

size problem for a Bayesian confidence interval was also

addressed.

On the other hand, we must note that the prior

distribution 'is a subjective probability distribution in

the sense that it represents an individual experimenter's

information and subjective beliefs about where the true

value of p is likely to lie". [Ref. 5:p. 314) Often the

best prior information about the parameter p may simply be

bounds on p, wherein the experimenter can only say that p

will not exceed some value b, and will not be less than

some value a. The density function that is reasonable tz

combine with experience expressed as bounds on the unknown

parameter seems to be the Uniform distribution on the

interval [a,b] since it "distributes our ignorance equally"

in the prior known interval (Ref. 4:p. 560].

The Uniform density function and prior distribution for

this study is the Uniform [a,b]

1
for a p !b

fl (p) = (3.4)

0 otherwise,

where
0 S a S p S b -1

15



Note that the Uniform (0,4] distribution belongs to the

class of Beta (r,s) distributions when both Beta parameters

are 0.

It is valuable to remember here that the Beta density

function (in the form that we use extensively later) is

(r + s + 2)
xr (I - X)s for 0 < x < 1

Cr + 1) (s + 1)

f(x) =

0 otherwise,

where
r > -1 and s > -1

C. DERIVATION OF THE POSTERIOR

The posterior density as it is expressed in Equation

3.3, Bayes' Theorem, is simply the conditional density of

p, given the sample values. It "expresses our degree of

belief of the location of p, given the results of the

sample". [Ref. 2 p. 556]

To derive our posterior distribution fz (p/x), we

substitute into Equation 3.3 the prior as the Uniform

density from Equation 3.4, and the sampling distribution as

the Binomial from Equation 3.2:

(n p ( - Pb-xX b -a

f2 (p/x) =
b: / n) ,( )

_x -x( - - dp
x b -a

16
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where

0 _< a <5 p <, b _< 1

If we cancel out terms, we have

px (1 - p)f-

f2 (p/x) =

f b 1 - p)ft.x dp

If we multiply numerator and denominator by the same

number, we have

F (n+2)
px (1-p) n-x

r(x+l) r(n-x+l)
f2 (p/x) =

r (n+2)I: px (1-p)"-xdp

r(x+l) r(n-x+l)

and we notice that the denominator is the area under the

curve of a Beta distributed random variable with parameters

r x + 1

and s n - x +

over the interval a to b. Thus, we have

r (n+2)
pX (lp)n-X

r(x+I) r(n-x+l)
f 2 (p/x) =

F3 (b) - F3 (a)

where F3 is the CDF of a Beta (r,s) distribution.

We also note that the numerator has the form of a Beta

density function with the same parameters (r,s) but the

argument p is defined to be a < p 5 b

17



So finally, our posterior distribution becomes

f3 (p)
f2 (pIX) = (3.5)

F3 (b) - F3 (a)

where 0 S a S p S b S 1

F3 : CDF of Beta (r,s)

and fj (p) has the form of Beta (rs)

where r = x + 1

and s = n - x + 1

If we let c = 1/[F3 (b) - F3 (a)], this posterior

distribution has the functional form of a Beta density

function with parameters (r,s), multiplied by a positive

constant c > 1.0, for a random variable p bounded by the

bounds (a,b) of the Uniform prior distribution.

Let us illustrate with an example using the ab-v

conclusions. Suppose that an experimenter uses past data

and puts bounds a = 0.2 and b = 0.8 on the probability that

a defective item is located in a sample of n = 10 items.

His prior distribution is Uniform for a random variable p

bounded between 0.2 and 0.8. After the inspection of all

the items, he counts x = 5 defective. Then from Equation

3.5, we have r = 5 + 1 = 6 and s = 10 - 5 + 1 = 6. We also

have from Beta CDF that F3 (0.8) = 0.98834, F3 (0.2) =

0.01165 and c = 1/[F3 (0.8) - F3 (0.2)] = 1/0.97669 =

1.02386. Then, his posterior distribution, is a form of

18



Beta (6,6) multiplied by 1.02386, for a random variable p

bounded again between 0.2 and 0.8.

D. THE POSTERIOR DISTRIBUTION AND BAYES' ESTIMATORS

We have shown above an example of the density function

of the posterior distribution, for specified Uniform prior

and Binomial sampling distributions. We will now calculate

the mean and the variance of the posterior distribution in

the general case of Equation 3.5. Let c be the constant

factor 1/[F3 (b)-F3 (a)] in the Equation 3.5. Then

r(n + 2)
a r(x + 1) r(n - x + 1)

If we combine terms and multiply numerator and denominator

by n + 2 and x + 1 respectively, we have

x + 1r F(n + 3)
n + 2 a r(x + 2) r(n - x + 1)

X + 1

=- + f 4 (p) dp

where f4 a form of Beta (r = x + 2, s = n - x + 1)

and a s p s b.

Substituting for c, we have

x + 1 F4 (b) - F4 (a)
E[plx] - (3.6)

n + 2 F3 (b) - F3 (a)

where F4 CDF of Beta (r = x + 2, s n - x+ )

and F3 CDF of Beta (r = x + 1, s =n - x + 1).

19



It is worthwhile to give a different form of the mean.

From Equation 3.6, we have

E1 r(n + 3) + px+l (l-p)D-X dp

x + 1 (x + 2) F(n - x + i)

n + 2 b r(n + 2) px (l-p)n-x dp
fa r(x + 1) r(n - x + 1)

Since the arguments of the Gamma functions are integers, we

can substitute with factorials and pull them out of the

integrals, giving

(n + 2)! [b p- n x

x + 1 (x + 1)! (n - x)! Ja
Etpix] =-

n +2 (n+ 1)! b
X! (n )! p)n-Xdp

Simplifing the constant terms, we have

(n + 2)! x! (x + 1) (n - x)! l p ('l-p) dp
E~plxj =

(n + 1)!(n + 2)(x + 1)!(n - x)! px (1-p)n-xdp

or

(n + 2)! (x + 1)! (n - x ) a PX + I (1-p) - xdp
E[plx] =b

(n + 2)! (x + 1)! (n - x)! px (1-p)f-1dp

which obviously gives

I: +'' (l-p) n- xdP

E[pix) = J: px (1-p)a-xdp
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To calculate the Variance, we use the well known result

Var[p] = E[p 2 ] - E(p]2 . Working as we did for the mean, we

have that

x+l x+2
E[p 2 Ix] = c (F5 (b) - F5 (a))

n+2 n+3

where Fs is a Beta CDF with parameters r = x + 3 and

s = n - x + 1. Then the variance of the posterior

distribution is

x+l x+2
Var(plx) = c (F5(b) - F5(a))

n+2 n+3

x+l 2

c (F4 (b) - F4 (a)
n+ 2

or

x + 1 x + 2 F5 (b) - F5 (a)
Var(plx) -

n + 2 n + 3 F3 (b) - Fa (a)

-(x + I F4 (b) - F4 (a))2 (3.7)

+ 2 F3 (b) - F2 (a)

The commonly used point estimate 0 for a proportion in

the Bayesian method is the mean of the posterior

distribution. However, if the posterior density for p is

not symmetric, other measures of the middle of the

posterior might also be used as the pcint estimate. Two

such measures are the mode of the posterior (which

maximizes the posterior density) or the median (which is
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the value that splits equally the area under the density

curve).

As in the classical method, interval estimates are

preferable to point estimates. In this Bayesian method, it

is easy to construct interval estimates of the proportion

p. A 95% confidence interval is provided by the 2.5 and

97.5 quantiles of our posterior distribution of Equation

3.5. Thus, the interval estimates depend on the subjective

bounds of the prior Uniform distribution (a and b), the

sample size n, and the number x of successes from the

sampling (Binomial distribution for sequential Bernoulli

trials). Before sampling, we know a and b, but we do not

know n and x. Note that our problem is how big should be

the sample size n.

This results in a need to guess the number x of

successes before we actually sample. We recall from the

definition of the mean of a random variable, that this

number would locate the center of gravity of the

distribution of the random variable and thus, is a likely

candidate if we have to give a single number as our guess

of the value of the random variable. So, prior to

sampling, a "good" guess for x, the number of successes, is

the mean of the prior Uniform distribution multiplied by

the sample size n, or

x= n
2
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Using this, our posterior distribution in Equation 3.5

becomes, for purposes of determining sample size n,

f3 (p)
f2 (p/x) = 1 (3.8)

F3 (b) - F3 (a)

where O1a pS b. 1

F3 : CDF of Beta (r* ,s * )

and f 3 (p) has the form of Beta (r' , s*)(a + b
where r = 1n + 1

and s* = n -n + 1
2

In Equation 3.8, the posterior distribution has the

functional form of a Beta density function with parameters

(r*,s*), multiplied by a positive constant c z 1.0, for a

random variable p bounded by the bounds (a,b) of the pricr

Uniform distribution.

From now on Equation 3.8 will be our posterior

distribution which we use in the next chapter as the base

to develop a procedure to calculate the interval estimates

and sample size. In the next chapter also, we will discuss

the computer programs that we used to find the sample sizes

to estimate the proportion p.
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IV. SAMPLE SIZE TO ESTIMATE A PROPORTION
USING THE BAYESIAN METHOD

In this chapter, we will explain how to use the

Bayesian method with a Uniform prior in order to find the

sample size to estimate a proportion. The experimenter has

some prior information about the unknown proportion in the

form of upper and lower bounds on the unknown proportion.

We use them as bounds for a prior Uniform distribution and

we wish to determine the sample size he needs, based on the

accuracy he likes.

First, we will derive the bounds of the Bayesian

confidence interval, where the proportion to be estimated

should lie with 95% confidence level. This interval leads

to the necessary sample size. Then, we will discuss the

computer programs we have used in this procedure. Finally,

we will provide tables and examples to assist the user to

find the sample size that meets his goals, and to visualize

the advantage of the Bayesian method in giving smaller

samples than the classical one.

A. THE BAYESIAN CONFIDENCE INTERVAL

Once we have obtained our posteriot distribution, we

can construct an interval which contains 100(1-a)% of the

posterior probability. Our posterior distribution, given

by Equation 3.8, has the Beta (r*,s*) form, multiplied by a
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constant for a random variable p bounded between a and b.

We let a be 0.05 for this study, and thus want a 95%

confidence interval size.

Let p.lo and p.up be the lower and upper bounds of the

confidence interval. Letting the area between a and p.lo,

the lower bounds, be a/2 = 0.025 of the whole area under

our posterior density function, f2 (p/x), we have

F2 (p.lo) = a/2 = 0.025

From Equation 3.8, we have also that

rP.1

F2 (p.lo) =J f2(p/x) dp,

or

i 1
F2 (p.lo) P-1 f3(p) dp,

F3 (b) - F3 (a)

where F3 (p) is Beta (r*,s*).

Thus, we have the equation

1 b. F ( f (p)dp = 0.025,

F3 (b) - F3 (a) j

or

F3(p.lo) - F3(a) = 0.025 [F3 (b) - F3(a)],

which finally gives

F3(p.lo) = 0.025 F3 (b) + 0.975 F3(a) (4.1)
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Similarly, letting a/2 = 0.025 be the area under the

posterior density function f2 (p/x) between p.up and b, we

have

F3 (p.up) = 0.0975 F3 (b) + 0.025 F3 (a) (4.2)

From Equations 4.1 and 4.2, we calculate p.lo and p.up,

and then by subtracting p.lo from p.up, we get the 95%

confidence interval size. This is the Bayesian interval

where our proportion to be estimated should lie 95% of the

time. As we did with classical method, let us call the

size of this interval 2A; it is a measure of estimation

accuracy. We will see that the sample size depends upon

the prior bounds (a,b) and upon the interval size 2A. The

decision maker uses his past information to state th-

bounds and his preference in accuracy to state the interval

size. The Bayesian method of this study gives the interval

p.lo to p.up, where the proportion p lies with 95*

confidence level.

In the next section, we will explain how these values

may be used to find the required sample size.

B. DETERMINING THE SAMPLE SIZE FROM THE BAYESIAN INTERVAL

In Chapter III, we derived our posterior density

function which has the form of a Beta distribution with

parameters (r* ,s*), multiplied by a constant, i.e.,
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f3 (p)
f2 (p/x)

F3 (b) - F3 (a)

where 0 a : p S b S 1,

F3: CDF of Beta (r* ,s*)

and f3 (p) has the form of Beta
(r* ,s*).

In Chapter III, we also explained why, for purposes of

determining the sample size n, the parameters r* and s*

take the values

r* (a + b) + 1~2

and

= (a + b)s* = n 2- n + 1

where a and b are the bounds of the prior Uniform

distribution.

Once we have obtained the parameters of our posterior

distribution, using Equations 4.1 and 4.2 we need to

compute the inverse cumulative distribution function at

0.025 and 0.975 for a Beta with parameters r* and s*. This

will result in the lower and upper bounds of the 95%

confidence interval. Then, if we subtract the lower from

the upper bound, we can determine the size of the desired

confidence interval.

The above procedure is used in the APL program SAMPLE

located in Appendix A. This program computes the sample

27



size needed to obtain a 95% confidence interval where the

probability or proportion should lie. The program is

interactive and requires the user to input the bounds of

the prior Uniform distribution and the desired confidence

interval size. Then it calculates the parameters of the

posterior distribution, and computes the confidence

interval that is provided when we sample 10 items.

Consequently, using a loop, it increases the sample size

until the desired confidence interval size is reached.

Finally, it prints the 95% confidence interval bounds and

the sample size needed to obtain the required confidence

interval.

The program SAMPLE uses the subroutines BQUAN, NQUAN,

and BETA located in Appendix B. These are APL programs

designed at Naval Postgraduate School to compute the

inverse cumulative distribution function of Beta

distribution. It must be noted that BQUAN often cannot

compute the inverse cumulative distribution function for

large Beta parameters. In our case, large parameter values

mean large sample size. Thus SAMPLE was written to

terminate its calculations at sample size 150: results can

always be obtained for sample sizes at or below this value.

This number can be increased, but in general SAMPLE cannot

evaluate sample sizes greater than say 200.
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C. TABLES FOR FINDING THE SAMPLE SIZE

In this section, we provide a table to assist the user

in finding the sample size that reflects his past knowledge

with the prior bounds, and his preference for accuracy with

the 95% confidence interval size.

Table 2 was constructed by executing the APL program

SAMPLE repeatedly for selected values of a and b, covering

the whole range from 0 to 1.0. Also, convenient interval

sizes were used.

The use of Table 2 is simple. For example, su;pose the

user puts prior bounds 0.5 to 0.8 and wants the interval

size 2A to be 0.25. He looks at the part of the table for

b = 0.8 and he finds the entry in row a = 0.5 and column CI

size 2A = 0.25. He has to sample 40 items tc be 9=%

confident that the proportion p will be in a ccnfiden:e

interval of size 0.25.

Before giving more examples of the use of this table,

it is well to note that some entries in Table 2 are blanc.

One reason for missing entries is, as mentioned in the

previous section, that SAMPLE generally can not evaluate

sample sizes greater than 200. Another problem in

constructing Table 2 occurred with the APL program NQUAN.

Its execution stops when the sample size is big (greater

than 100) and the sum of the prior bounds (a + b) is

between 0.7 and 1.3. Finally, another reason for blank

entries is that 2A must be less than b - a.
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TABLE 2. NUMBER OF SAMPLES TO OBTAIN 95% CONFIDENCE
BAYESIAN INTERVAL

b .05 b =.1 b =.2

CI size 2A CI size 2A CI size 2A
a 0.025 0.05 0.075 0.075 0.10 0.15

0 617 299 82 249 140 40

0.025 336 275 151 32

0.05 299 156

0.075 318 139

b =0.3 b =0.4

CI size 2A CI size 2A
a 0.1 0.15 0.2 0.25 0.3 0.1 0.15 0.2 0.25 0.3

0 196 87 42 12 245 108 60 36 18

0.05 221 94 37 118 64 35 15

0.1 244 93 125 66 30

0.2 126

a b 0.5 b 0.6

0 126 70 44 29 141 78 49 29

0.05 134 74 46 30 147 82 51 35

0.1 141 78 48 29 153 85 53 36

0.2 153 82 40 89 55 35

0.3 90 44
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(TABLE 2 CONTINUED)

b =0.7 b = 0.8

CI size 2A CI size 2A
a 0.1 0.15 0.2 0.25 0.3 0.1 0.15 0.2 0.25 0.3

0 153 85 53 36 89 56 38

0.05 87 55 37 91 57 39

0.1 89 56 39 92 58 39

0.2 92 58 39 168 93 59 40

0.3 168 93 58 36 92 58 39

0.4 90 44 89 55 35

0.5 153 82 40

0.6 126

a b= 0.9 b =0.95

0 92 58 39 93 58 40

0.05 93 58 40 93 59 40

0.1 168 93 59 40 93 58 40

0.2 92 58 39 91 57 39

0.3 89 56 38 87 55 37

0.4 153 85 53 36 147 82 51 35

0.5 141 78 48 29 134 74 46 30

0.6 126 66 30 118 64 35 15

0.7 244 93 221 95 37

0.8 156
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(TABLE 2 CONTINUED)

b = 0.975 b = 1.0

Cl size 2A CI size 2A
a 0.05 0.05

0.85 495 432

0.9 336 299

0.925 192

b = 0.975 b = 1.0

CI size 2A CI size 2A
a 0.1 0.15 0.2 0.25 0.3 0.1 0.15 0.2 0.25 0.3

0 168 93 58 40 168 93 59 40

0.05 93 58 40 93 58 40

0.1 93 58 40 92 58 39

0.2 90 57 39 89 56 38

0.3 152 86 54 37 153 85 53 36

0.4 144 80 50 34 141 78 49 29

0.5 130 72 45 29 288 125 70 43 29

0.6 256 113 62 36 17 245 108 60 36 18

0.7 209 91 41 8 196 87 42 12

0.75 183 72 15 169 71 21

0.8 151 32 140 40

0.85 81 92
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We should mention also that all the programs used in

this study are written in APL and can be run on any

computer with APL capabilities. However, because of the

extensive loops they have, they may require a significant

amount of time.

Let us illustrate with some additional examples the way

that Table 2 can be used, and at the same time, let us

compare the results it gives with those given in Table 1

from classical statistics.

The classical procedure requires the experimenter to

state values for confidence interval size 2A and estimated

probability of success p. The Bayesian procedure requires

2A and prior bounds a, b. In order to be able to compare

the results obtained from these two methods, we recall an

argument in which our Bayesian procedure was based. The

experimenter, using his past knowledge, states the bounds

of the prior Uniform distribution.

For any finite sample size, the Bayesian estimate is
"shaded" toward the prior mean, the best guess for e
before any sample values were taken [Ref. 2:p. 5663.

In our study, we use p in place of e. The mean of the

prior is (a + b)/2, the sum of the bounds divided by two.

To compare the two methods, this number, from the Bayesian

method, is used as the probability of success to enter

Table 1 and find the suggested sample size from the

classical method. Thus, if the bounds of the prior Uniform

are 0.5 to 0.9, we use the number (0.5 + 0.9)/2 = 0.7 as
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the probability of success to enter in Table 1, and then

compare the results.

We proceed now with some examples to explain the use of

the Bayesian Tables and how to find the sample size when we

have the bounds of the prior Uniform distribution and the

desired 95% confidence interval size.

1. Example 1: Fraction Defective

Suppose a lot of 10,000 items is received from a
supplier; the lot contains p (unknown) defective
items. Also, suppose that we have kept records for
the past lots from this supplier and we decide our
subjective bounds to be a = 0 and b = 0.4. How many
items do we have to sample in order to be 95%
confident for the fraction defective, with ± 0.01
estimation accuracy? We look at the part of Table 2
with b = 0.4, and we find the sample size of 60 items
in the entry for row a = 0 and column CI size 2A =
0.2. If we look at Table 1, for probability of
success 0.2 (column 0.8) and interval size 0.2, we
find 62 items. The Bayesian approach reduced a
sample size by 2/62 or 3%. Note also that had we
used the common textbook formula for sample size for
a proportion, (Equation 2.7), the result is n = 97.

2. Example 2: Hit Probability

Suppose the size of the load of a recently modified
weapon system has to be decided; this system has
(unknown) hit probability, p, against one of the
targets it is designed for. Suppose also that we
have data from the past firings with the old version
and we decide our subjective bounds will be a = 0.7
and b = 0.9. How many items do we have to fire in
order to be 95% confident of the hit probability,
with ± 0.05 estimation accuracy? We look at the part
of Table 2 for b = 0.9 and we find the number of 244
items in the entry for row a = 0.7 and column CI size
2A = 0.1. For the classical result, we look at Table
1, for 0 = 0.8 and 2A = 0.1, we find 246 items. With
the Bayesian approach, we need 2 items less, i.e.,
0.008% better results. Had we used Equation 2.7, the
result would be 385.
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3. Example 3: Detection Probability

Suppose the number of acoustic devices has to be
defined in order to design a new type of sonobuoy.
Each device has p (unknown) probability of detection.
Suppose also that experience from similar hydrophones
gives a probability between 0.1 and 0.5, and we like
± 0.15 accuracy. How many acoustic devices will we
have to use in order to fulfill the requirements 95%
of the time? We look at the part of Table 2 for b =
0.5 and we find 29 devices in the entry for row a =
0.1 and CI size 2A = 0.30. If we use Table 1 from
classical statistics for probability of success 0.3
(column 0.7), we find 36 devices. The Bayesian
approach gives 7 devices less, that is 19.5% better
results. Table 1 in column 0.5 (Equation 2.7) gives
the number 43, almost twice as big as the Bayesian
one.

We have demonstrated above the use of the Bayesian

tables in finding sample sizes. The tables provide the

most common bounds and interval sizes. If the user needs a

sample size for bounds and/or interval size that are not

included in the tables, again the program SAMPLE can be

used. The user interactively inputs his prior bounds and

desired 95% confidence interval size and the output is the

confidence interval bounds and the number of samples. An

APL session, solving a problem in this case, is shown in

Figure 2. Prior bounds are 0.40 to 0.75 and interval size

is 0.25. The Bayesian method requires 54 items

In order to compare the answer with that from classical

method, we use the Equation 2.6 for 0 = (0.40 + 0.75)/2 =

0.575 and A = 0.25/2 = 0.125 and we find 61 items. In this

case, the Bayesian approach gave 7 items less or 7/61 =

11.5% better results.
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To assist the comparisons between the two methods, let

us present the results of the examples in a table.

SAMPLE
ENTER A, LOWER BOUND OF UNIFORM PRIOR
0:

.4

ENTER B. UPPER BOUND
0:

.75

ENTER 95 PERCENT C.L. INTERVAL SIZE (MUST BE LESS THAN B-A)
0:

.25

95 PERCENT C.L. UPPER BOUND : 0.6959232423

>> LOWER : 0.4467326643

>> INTERVAL SIZE: 0.2491905779

REQUIRED SAMPLE SIZE : 54

Figure 2. An APL Session Using The Program SAMPLE

TABLE 3. NUMBER OF SAMPLES TO OBTAIN 95% CONFIDENCE
INTERVAL SIZE

Number of Samples Improvement
Example a b CI Size Bayesian Classical %

Example 3 0.1 0.5 0.3 29 36 19.5

APL session 0.4 0.75 0.25 54 61 11.5

Example 1 0.0 0.4 0.2 60 62 3.0

Example 2 0.7 0.9 0.1 244 246 0.008
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We see that as the sample size gets larger, the %

improvement of the Bayesian method decreases. "The

difference between the Bayesian values, and the classical

approach, disappears as n increases" [Ref. 2:p. 5731. This

happens because as the sample size gets larger, the

posterior distribution becomes less dependent on the

assumed prior and more on the sampling one. When values of

n are smaller, the Bayesian values may differ considerably

from the classical. This situation underlines the

importance of the prior distribution in that, for small

sample sizes, the prior distribution must be chosen

carefully.

To complete the study of the Bayesian method, let us

lock again closely at Table 2. We see that the sample

size n increases when the interval size 2A decreases. We

see also, that for the same interval size and holding one

bound fixed, the sample size increases as the other bound

approaches 0.5. If we use the interpretation which we did

before, i.e., to consider that the sum of bounds divided by

two in Bayesian method is equivalent with the probability

of success in the classical method, we conclude that

Bayesian intervals behave exactly in the same way with

those in classical statistics. The discussion in Chapter

II and its presentation with Figure 4, about the changes

and the dependence of sample size in classical method, is

also valid for the Bayesian one.
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In the next chapter, we summarize our work and propose

additional studies for the use of Bayesian methods to

reduce the sample size and thus, the cost of weapon

testing.
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V. SUMMARY AND SUGGESTIONS FOR FURTHER STUDY

In this chapter, we will summarize the procedure we

used, working with the Bayesian method, to obtain sample

sizes which are smaller than those given by classical

statistics. Finally, we make some recommendations for

further research in using Bayesian methods to reduce the

sample size needed to estimate a proportion or probability

in any test field, and thus to reduce the cost.

A. SUMMARY

In this paper, we used a Bayesian method to obtain the

number of samples needed to estimate a proportion or

probability.

First, we described the classical method and explained

the point and interval estimates. Using desired confidence

interval sizes, we produced a table with sample sizes given

4 from classical statistics for 95% confidence intervals.

Then, we described the Bayes' Theorem with the prior,

sampling and posterior distributions. We choose the

Uniform [a,b] as prior. This, combined with the sampling

Binomial, give a form of Beta distribution as posterior for

a random variable bounded by [a,b]. We derived the

Bayesian 95% confidence interval and produced a computer

program to calculate the sample size. We provided a table

and gave some examples to assist the user to determine how
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to use these results to obtain smaller sample sizes.

Finally, we compared the results given by both methceds for

the same 95% confidence interval size. For small sample

sizes, generally smaller than 100, the Bayesian method with

the Uniform [a,b] prior improves the results and thus

decreases the cost of tests based on sequential Bernoulli

trials.

Thus, when the decision maker has prior knowledge, and

he wants to benefit from this, the Bayesian method of this

study is recommended in order to reduce the number of

items, and consequently, the cost.

In the next section we suggest some additional studies

based on Bayes' Theorem and on this paper, for even smaller

sample sizes.

B. SUGGESTIONS FOR FURTHER STUDY

This paper uses the Uniform [a,b] distribution as

prior. This prior is easy to use, but it does not always

give better answers than other prior distributions. The

study by Manion approached the sample size question with a

Beta prior distribution for a proportion bounded by 0 and

1.0. For a quick comparison, we use an example.

As an example, if the decision maker wanted the size of
the 95% confidence interval to be 0.20 arM his subjective
bounds on the proportion were 0.14 to 0.86, the
parameters on the Beta prior would be 4,4 and the number
of observations needed would be 87 (Ref. 6:p. 42].

Our study with Uniform [0.14,0.861 prior gives 93

items. Possibly, it could be better if a prior that
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combines both studies and concepts were to be chosen, i.e.,

a Beta for a prior bounded random variable. Another prior

density function could be the triangular one, again for

bounded random variable. The sensitivity of resulting

sample size to the choice of bounds a and b could also be

explored.

An additional research task could be an effort to fill

the blanks in the table of the Bayesian interval sample

sizes of this study. This presupposes the development of a

computer program that can compute the inverse cumulative

density function of the Beta distribution for large

parameters.

Finally, an addition to this paper could be the

development of tables for confidence intervals other than

95%, such as 90%, 97.5%, and 99%.

We hope that the chance to reduce the cost of sampling

with smaller sample sizes to estimate a proportion, as

given from this paper, will be beneficial to any authority

dealing with tests of acceptance, reliability, etc.
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APPENDIX A. THE APL PROGRAM "SAMPLE" USED TO COMPUTE
SAMPLE SIZES FOR BAYESIAN INTERVALS WITH

95% CONFIDENCE LEVEL.

V SAMPLE [0]
V SAMPLE;LF:RT;N;C;D:LO;UP;E

[I] A THIS PROGRAM COMPUTES THE SAMPLE SIZE NEEDED TO OBTAIN A
[2] A BAYESIAN INTERVAL WITH 95 PERCENT CONFIDENCE LEVEL, BASED ON
(3)] A PRIOR UffIEQRff (A.BJ DISTRIBUTION. IT ASKS THE USER TO
('*] A INPUT THE PRIOR BOUNDS A AND B AND THE DESIRED INTERVAL SIZE.
(5] IT NEEDS THE APL PROGRAMS BQUAN, NQUAN AND BETA TO BE STORED.
(6] n Zr TERMINATES ITS EXECUTION WHEN THE SAMPLE SIZE IS Z 150. FOR
(7] a BIGGER NUMBERS, THE VALUE OF N ZN LINE 22 MUST BE INCREASED.
(81 p IF CONFIDENCE LEVEL DIFFERENT THAN 95 PERCENT IS REQUIRED, LINES
[9) A 28 AND 29 MUST BE CHANGED ACCORDINGLY.
[10]

[12] 'ENTER A. LOWER BOUND OF UNIFORM PRIOR'
(13) LF.O
[11 1
(15) 'ENTER B, UPPER BOUND'
(16) RT+O
(17]
tie) 'ENTER 95 PERCENT C.L. INTERVAL SIZE (MUST BE LESS THAN B-A)'
[19) INT+0
(20)
[21) N+9
(22) CONT:4FINxxN=151
[23) N'-N+1
(214] C+1+Nxo.5x(LF+RT)
(25) D..N+2-C
(26) E+C,D
(27)
[28) LO+(0.025x(E BETA RT))+0.975x(E BETA LF)
(29) UP'.(0.975x(E BETA RT))+0.025x(E BETA LF)
(30) LO4E PQUANv LO
(31) UP+E BQUAN UP
(32)
(33) LOOP:-*ENDxt((UP-LO)!51NT)
(314) +CONT
(35) END:'
(36)
(37] '95 PERCENT C.L. UPPER BOUND : ',*UP
[38] ' > LOWER : ,mLO
(39)
(140) ' > INTERVAL SIZE: ',v(UP-LO)
(L41)
(142) 'REQUIRED SAMPLE SIZE :',vN
(143) +0
(141] FZN:'SAMPLE SIZE IS GREATER THAN 150 AND EXECUTION TERMINATED'
(U45)
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APPENDIX B. THE APL PROGRAMS USED TO COMPUTE
THE INVERSE CDF OF A BETA DISTRIBUTED

RANDOM VARIABLE.

V UQUAN [0)
V V+A EQUAN P;E:U:S;D;L:Z:DENS:I:PPM;Xg;C2;C3:C4

1)nIMPLEMENTATION OF CARTER, 1947, BIOMETRIKA FOR APPROXIMATE INVERSE BETA
(2) A 11/5/86 BEST FOR ACl)S2xA[2), AND SEEMS TO WORK FINE
(3) a 12/27/86 AC299 2 NfWTQ1i-RAEHQff Lrifi~rLQffas AQQ IfQaf EQBf GREATER acc.
(4) *((L/A)<l)/SMALL
(5) E+NQUAN 1-P
(6) U+$-1+2xA
(7) S++/+U
(8) D.-/tU
(9) L+.C3+E*2),6
(10) Z-((S42 ),Ex(L+2S).5)-Dx(L+(5#6)-S*3)-(D*2)x((245)*O.! )xEx(11+E*2).144t

[12) LOOP:DENS+A(1)x(A(1) !1++/A)x(V*A[1)-1)x(1-V)*A(2)-1
[13) V+V-((A BETA V)-P)+DENS

(15) -0
(16) n MY VERSIQLN EQL8 Tgg LUA QULTL. WiE 419<1. 12/31/86
(17) a MQDZZE 19 /1/97 WITH~ A COLJ~f-jfg ZfZEf ffayIQf.
(18) P MQDjLf[E9 1/3/87 ZTQ 90 09AL AhvQ 6IZff9AHQ 0IAL1f. ALYP V?f&a QUANriLE
(19] P Y00E QNEg fALBAmrf 1.5 aga-f QBATBfAy Qy (EQH Qff 612f). 0-TUE- .719f (Qa
(20) a BQCfi) qfS! TH VNaj IflCM Ik UggU*J~g E~ E &Z CQBElffjk-FIjIh0.
(21) SMALL:V.X.(p,P)po
[223 PP4-P5M+A (2)44/A
(23) X(PP/IoX).((PPIP)*(((A[1)<1),At1J?!1)11,AE(1)x)A[1Il-++/A)*4A(1)
(24) X((-PP)IIPX)+1-((1-(-PP)/P)#(((A(2)d1),AE2) 1)/1.A(2))xA(2)111++/A)*4A(2)
(25) X((X=1)11PX)~1-1E1l5

(27) START:F.(A[1) 11++/A )xA(1)x(X*A[1)-1 )x(1-X)*A(2)-1
(28) C24((1-A(1l)#)X)+(A(2)-1).1-X
(29) C3,(2xC2*2)+((A(1)-1)+X*2)+(A(2)-1 ).(1-X)*2
(30) C4.(6xC2*3)+(7xC2x(C3-2xC2*2))+((1-A(11))X*3)+(A(23-1)4(1-X)*3
1313 F.(F-(A BETA X))#F
(32) V.X+F+((C2xF*2),2)+(C3x(F*3)46)+C4x(F*4)424
(33) V((V>l1/pVlj44
(34) +0
(35) ONE:M'.1-M
(36) S.-(Mx(1-M)#1++/A)*0.5
(37) *0((AiF/A)=2)/4+OLC
(38) X(PPI,9oX).M+SxNQUAN PP/P
(39) X((X~0)1jpXj+1E1l5
(40) *PSTART
(41)l X((-PP)IIPX)+M+SxNQUAN(-PP)IP

(43) +START
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V NQUAN (0)
V Z.NQUAN P:A;B:C:DIQIT;S;R:F

Ell a IMPLEMM9N 4408B1 AS 111 PY BEASL91 sE8IQCB. AfFLjIEV Sfar, 1977
(2) A FQh A MTHQ IVEVZ OE EUACTLQI!, HUMO CQBB NEPIN ?iQMt QUANTUN
(33 . Ujf CAINEP ACCUACY fffj TUIAL 1.52c10* 8. FQH Q81ATER ACCVBACX.
E4) a EECILI Egg M~8985 P MUMQE~ ANQ Of Qfi ME NjErQOi-RdEHONQfj &QQP.
[6) +(v/(( IQ4,P-0.5)50.42))/3+OLC
(7) S*-Z+.Q
(8) +EXT
(9) r.(o.42kIQ)/Z..Q
(10) +(F+((PT)=P,P))/2+OLC

(12) A+ 2.50662823884 -18.6150006252 41.39119773534 -25.44106049637
[133 8- -8.4735109309 23.08336743743 -21.06224101826 3.13082909833
(14) T.Tx(( (T*2 )o.*0,i3 )+.xA)*1.((T*2). .*i4)+.xB
(15) Z1(.42aIQ)/xpQ4.T

[17) EXT:C. -2.78718931138 -2.29796479134 4.95014127135 2.32121276858
(19) D+ 3.54388924762 1.63706781897
(19) S+(xS)x((RO.*0,13 )+.xC)41+(((R.( IS0.5-IS)*0.5)..* I 2)+.xD)
(203 ZE((.42<1Q)/IPQ).-S
(21) +0
(22) ERR: IOLV Qfl L%?Qgf LE YAL&VE aaf Qf/i QE ilAfKI.

V BETA (0)
V Ui-A BETA X;Y;N/;N:QD:EV;Z:i

Ell a 12/27/86 EVALVATE.5 T!!E &Z'± CVE, fAgAff29H A, AT YffCTQB X U4Y ZUE
(2) A BQUVyg-BARGMAff QqrtL~ffQ EBAQL? AT~ pfEZ! YARYINQ EBQL 7 TQ 21.
(33 P 11TH ANNUAL S1'ffQkUjQff TE 1NT~gAC QE CQOPYI.'jf SCIENCE ANDQ
(4) a Sfa ig~Is. 1978, E 325. BECAY.JS QE 2Uf BANCEQ QE It +/A5255. SUNH IQ
(5) A CIE A !2q!29 QLE L!QBI PiCRL5.
(6] Y+X~S(A[1)4+/A)
(7) U+(P,Xb,0

(12) EV.--W' .x(x/((2,N)p,(A[1)+0,iN-1), (+/A)+0.IN-1))4x/(N,2)pA(1)+0,t (. IV-Z+I)

(14) *0((P-.r-1)>o)/L
(153 U(7/tpU>+(#Z)x(A(1) V14+/A)x('*A(13 )x(l-N)*A(2)
(16) +((+/Y)=Px)/o
(17) FLIP:A4(A
(19) hw.1-('.Y)/X

(20) EV+-AO.x(((2,N)P(A11)+0,iN-1), (+/A)40,iN-1))4+'/(N,2)pA[1J+0.i (2xN-Z.1)
(21) L1:Z.1+EV(:X).1.OD~si3.Z

(23) U(('-Y)/ipUJ+1-(4Z)x(A(1J11+/A)x(W?*A(1))x(1-II)*A(23
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